Software in practica: de mogelijkheden zijn LeGIO

Praktijk-OLA G0M88a van OPO I0N62A
‘Geographic Information Systems - GIS’

Jos Van Orshoven & Marianne Hubeau
Fac. BIW & Dep. AOW
GIS ~ GI S&T ~ Geomatics

= Science and Technology related to the acquisition, modelling, management and transformation of data about geographic reality for information provision and decision support

= Digital geospatial technology underpinned by scientific disciplines
 o Geo-Informatics, Geo-Mathematics
 o Geodesy, Photogrammetry, Remote Sensing, Cartography, Data(base) modelling, …

• Encompasses
 o GIS sensu stricto
 o Earth Remote Sensing, Earth Image processing, Proximal and in situ sensing
 o GNSS (GPS, Galileo, …)
 o Other dedicated techniques for acquisition and processing of geodata
 o Geo-ICT for modelling, customisation, automation, dissemination (SDI)
OPO I0N62A
‘Geographic Information Systems’

• 3 OLA about concepts and algorithms, each 1 ECTS
 o Interactive lectures

• 1 Practical OLA (1 ECTS): Exercises and assignments in solving geospatial questions by means of GIS-software
 o Preprocessing of geodata
 o Query, Transformation
 o Postprocessing, Symbolisation & Visualisation, Reporting

• Ba-OPO – heterogeneous public
 o Final phase Ba BIW & Biology
 o Incoming ERASMUS-students
 o Ma-strengthening, Pre-doc
 o Credit contracts
 o VLIR-UOS (sandwich) students
 o Outgoing ERASMUS-students
OLA G0M88a ‘Practical GIS’

- Until 2006-2007
 - ‘Traditional Approach’
 - Guided sessions in PC-room
 - Pre-installed CCSS4G
 - Ready-to-use geodata supplied
 - Step-by-step and illustrated tutorial for specific software (-version)
 - Assignments

- Problems
 1. Regular students cannot continue their work at home
 2. Remote students cannot be accommodated
 3. Students are not encouraged to acquire secondary skills
 4. Tutorials are rapidly out-of-date, intensive to maintain
Problem 1
Regular students cannot continue their work at home

- Solution
 - Replace CCSS4G by FOSS4G
 - FOSS4G can be downloaded and installed freely
 - Standardisation and quality of FOSS4G has increased
 - Equivalent to CCSS4G for basic level work
 + Students can work at own pace in and after class

- Students are assumed to have a personal computer
Problem 2: Remote students cannot be accommodated

• Solution
 o Solution to problem #1
 + Replace PC-class sessions by work@home
 + Organise non-compulsory feedback sessions
 + Use distance learning platform to
 + Provide instructions and data
 + Provide advice and feedback
 + Organise evaluation (Assignments)
 ✔ Supervised Self-Study (SSS)

• Students are assumed to have a personal computer + broadband internet connectivity
Problem 3
Students are not encouraged to acquire secondary skills

• Self- and peer-to-peer help; work with internet communities
 ➢ Solution = solution to problem #1 + 2

• Discover, explore and exploit alternative software; Install and manage software
 ➢ Solution = solution to problem #1 + 2
 + Make exercises and assignments software-independent

• Discover, explore and exploit alternative data sources; Download and manage data
 ➢ Solution = solution to problem #1 + 2
 + Make exercises and assignments data-independent
Problem 4
Tutorials are rapidly out-of-date, intensive to maintain

• Solution
 o Solution to problem #3
 + Develop software (version)-independent tutorials ~ conceptual exercises which do not contain any reference to specific software, CCSS4G nor FOSS4G

• Many software solutions are available with a high degree of standardisation in terms of interfaces, toolboxes, terminology, …
GIS-software is rapidly out-of-date but increasingly standardised.
G0M88a from 2007-2008 onwards

- In-class + prescribed CCSS4G

- SSS + prescribed FOSS4G

Answer to problems 1, 2 & (partially) 3?
- Test student satisfaction of different approaches
Student satisfaction of two approaches: SSS/FOSS4G versus In-class/CCSS4G

Fall-semester 2010-2011 (Hubeau et al., 2011b; Van Orshoven et al., 2010)

Analysis 1: Traditional In-class approach (TA) versus Supervised Self-Study (SSS) (Ba-course)
Analysis 2: Ba-course versus Ma-Course (SSS)
Analysis 3: With versus Without previous SSS-experience (SSS)
Analysis 4: CCSS4G versus FOSS4G
Summary of results of Ba/Ma-surveys

• Web survey in dec-10/Jan-11
• FOSS4G goes hand in hand with ‘Supervised Self Study’ (SSS)
• Mature students (Ma & post-Ma) are very happy with SSS & FOSS4G
• Undergraduates want/need more guidance
• Previous SSS-experience does not affect results
• FOSS4G equally appreciated as CCSS4G
 o PostgreSQL/PostGIS = highly appreciated
 o GRASS-plugin of QGIS probably explains lower appreciation in Ba-course
• Further use of FOSS4G by students, beyond the targeted courses, is limited but potential is recognised
LeGIO-project: OWP/2010/18

- Leuven Geografisch Informatie Onderwijs
- 1-nov-10 to 15-sep-12

- Development and evaluation of software-independent tutorials for SSS of GI S&T
 - Integrated answer to problems 1 to 4?
Evolution of G0M88A from 2010-2011 onwards

In-class + prescribed CCSS4G

SSS + prescribed FOSS4G

SSS + FOSS4G or CCSS4G to be selected by student

Software-independent exercises

= Conceptual exercises

➢ Data are made available
Conceptual exercises (Hubeau et al., 2011a)

Objectives:

• Promote acquisition of in-depth knowledge about GIS-concepts
• Stimulate exploration of applicable GIS-softwares
• Long-living tutorials
Conceptual exercises

3. Workflow

Buffer and overlay analysis
The purpose of the first assignment is to determine which land cover or land use classes occur in 100m wide zones along the river system of the Tabacay watershed. The Tabacay geographic database contains the geodataset rios.shp. The ESRI-Shapefiles section of the same database contains the shapefile coberturas.shp with land cover and land use information. We will use these two layers for this assignment.

- Create a new GIS-project.
- Import shapefiles rios.shp and coberturas.shp.
- Make also sure the Coordinate Reference System is WGS84/UTMzone17S.

Now, you will do a spatial vectorial data analysis on the two shapefiles in different steps.

1. Buffer analysis
The first operation is a buffer operation. The buffer-functionality is a Vector analysis and can be found at the geoprocess toolbox. A buffer is a proximity analysis.

- The input vector is rios.shp.
- The buffer distance is 100 map units (which is set up in meters).
- The new layer rios_buffer.shp needs to be displayed in the data view.
- Examine whether the expectations are met. How many polygons are in this geodataset? (Check the attribute table)

2. Overlay analysis
The second operation is to create an overlay of the intersection type between the coberturas geodataset and the new buffered river geodataset. An intersection is an overlay analysis. The operation is a spatial query: Intersect, rios.shp intersects with coberturas.shp.

- The input vector is coberturas.shp.
- The intersect layer is rios_buffer.shp.
- Call the output file as rios_intersects.shp.
- Load the new geodataset as a layer into the GIS-project.
Software-specific versus software-independent tutorials

Fall-semester 2011-2012 (Hubeau et al., 2012a)

Control group

- Software-specific exercises → QGIS Wroclaw 1.7
- Blended learning environment → SSS
- 10 Students - 8 Students

Test group

- Software-independent ‘conceptual’ exercises
- Distance education → SSS
- 11 Students

Practical exam with ArcGIS-software, unknown by all participants
Learning effectiveness

• **Learning effectiveness:** Comparison of the students’ performance:
 o Practical assignments (2)
 o Practical exam
 o Theoretical exam

• **Learning experience:** The perceived preparedness + total hours spent (*Efficiency*):
Results

- **Learning effectiveness**

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th>Test group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>18.52/25</td>
<td>19.59/25</td>
<td>0.432</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>19.25/25</td>
<td>18.09/25</td>
<td>0.591</td>
</tr>
<tr>
<td>Practical exam</td>
<td>16.93/25</td>
<td>15.86/25</td>
<td>0.611</td>
</tr>
<tr>
<td>Theoretical exam</td>
<td>20.45/40</td>
<td>22.90/40</td>
<td>0.522</td>
</tr>
</tbody>
</table>
Results

Learning experience

<table>
<thead>
<tr>
<th>Questions</th>
<th>Control group</th>
<th>Test group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hours worked</td>
<td></td>
<td></td>
<td>0.021*</td>
</tr>
<tr>
<td><20h</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>20-40h</td>
<td>25%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>40-60h</td>
<td>25%</td>
<td>38%</td>
<td></td>
</tr>
<tr>
<td>>60h</td>
<td>50%</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>What was your experience to work with an unknown GIS-software?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficult</td>
<td>0%</td>
<td>Difficult</td>
<td>27%</td>
</tr>
<tr>
<td>Rather difficult</td>
<td>0%</td>
<td>Rather difficult</td>
<td>9%</td>
</tr>
<tr>
<td>Frightening at the beginning but challenging</td>
<td>100%</td>
<td>Frightening at the beginning but challenging</td>
<td>45%</td>
</tr>
<tr>
<td>Great experience</td>
<td>0%</td>
<td>Great experience</td>
<td>9%</td>
</tr>
<tr>
<td>How good did the Supervised Self Study -tutorial prepare for the practical exam?</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Not so good</td>
<td>0%</td>
<td>Not so good</td>
<td>9%</td>
</tr>
<tr>
<td>Good</td>
<td>50%</td>
<td>Good</td>
<td>36%</td>
</tr>
<tr>
<td>Very good</td>
<td>50%</td>
<td>Very good</td>
<td>55%</td>
</tr>
</tbody>
</table>
Results: Software independent tutorials

• “Lead to more in-depth knowledge + more easy adaptation to new GIS-software”
 o Not confirmed but software-independent approach seems to be equivalent

• “Require more effort by student”
 o Not confirmed: time efficiency is higher for the test group

• “Lead to higher student drop-out rate”
 o Not confirmed
Ba-Student satisfaction with tutorials 2010-2011 & 2011-2012

N = 78 (IDRISI), 25 (QGIS), 10 (Conceptual)

Hubeau et al., 2012b
Summary

• FOSS4G, SSS, Conceptual tutorials and their combination are well received by students (and staff)
• Current experience underpins further development and testing
• Validity of data-independency has not been tested yet but the hypothesis is clearly affirmative:
 o Searching, evaluating and acquiring valid geodata for providing geo-information and spatio-temporal decision support is a key issue for future professionals
 o Current research and policy efforts regarding Spatial Data Infrastructures pave the way.
Thank you

For presence and attention, comments, opinions, suggestions!

• Hubeau, M., A. De Meyer and J. Van Orshoven, 2012b. Student satisfaction towards software-specific and software-independent tutorials of GI S&T. Accepted for oral presentation at SAGEO, Liège, nov-2012.

